Das Werkstoffmaschinenlabor (WZL) der RWTH Aachen untersucht in einem Forschungsprojekt den Einsatz von Sensorik und Künstlicher Intelligenz für die modellbasierte Regelung im 3D-Druck. Das Projekt setzt an der Problematik an, dass AM-Technologien häufig noch keine reproduzierbare und beherrschbare Fertigung von hochqualitativen Bauteilen zulassen und somit ein hoher Aufwand für die Qualifizierung der produzierten Bauteile erforderlich ist, was wiederum dazu beiträgt, dass die Technologien in der Breite noch keine Serienreife aufweisen.
Konkret untersucht das Forschungsprojekt „SmoPa3D – Sensorgestützte modellbasierte Parametrierung von 3D-Druckprozessen“, wie sich durch Integration von Laserlichtschnittsensoren die Qualität des Drucks im Prozess erfassen und sich diese Kenntnis für eine echtzeitfähige modellprädiktive Regelung verwenden lässt. Hierdurch werden die Druckprozesse dazu befähigt, die Qualität trotz plötzlicher Störungen oder ungeeigneter Parametrierung zu gewährleisten und Druckabbrüche zu vermeiden.
Das gerade begonnene Projekt schließt an die erste Projektphase an, in der eine automatische Defekterkennung mithilfe von Laserlichtschnittsensoren implementiert wurde. Dieses Messsystem erfasst die einzelnen Bauteilschichten mit einer Auflösung von 50 µm und bildet ein digitales Modell des Bauteilzustands. Durch den Vergleich mit dem Soll-Modell können Abweichungen erkannt werden, welche gegebenenfalls zu einer verminderten Qualität des Bauteils führen. Mittels Methoden des maschinellen Lernens konnte das Projektteam zeigen, dass eine Vorhersage qualitätsrelevanter Merkmale des finalen Bauteils möglich ist.
Aufbauend auf diesen Erkenntnissen soll in der kommenden Förderperiode eine echtzeitfähige Prozessregelung entwickelt und implementiert werden. Auftretende Abweichungen sollen hierzu nicht nur erkannt, sondern zusätzlich nach Güte und Art kategorisiert werden. Anschließend werden auf Basis dieser Daten und der Stellparameter des Druckers qualitätsrelevante Merkmale nachfolgender Schichten geschätzt, um schwerwiegende Defekte, welche zu verminderter Bauteilqualität oder Druckabbruch führen, vorhersagen zu können. Diese Kenntnis soll zur Implementierung einer Prozessregelung genutzt werden, welche eine dynamische Korrektur des Maschinencodes oder der Stellparameter vorsieht. Eine automatische Optimierung des Druckers wird so, während des Drucks, ermöglicht.
„Durch die datengetriebene Regelung von 3D-Druckprozessen versprechen wir uns eine höhere Akzeptanz für den industriellen Einsatz dieser Technologien und dadurch eine ressourceneffizientere Produktion durch Materialeinsparungen und Vermeidung von Überproduktion.“
Jonas Großeheide, wissenschaftlicher Mitarbeiter am Lehrstuhl für Fertigungsmesstechnik und Qualitätsmanagement am Werkzeugmaschinenlabor WZL der RWTH Aachen.
In den kommenden zwei Jahren Projektlaufzeit erwarten die Forschenden eine erfolgreiche Implementierung einer echtzeitfähigen Regelung an einem FDM-Drucker.
Bild oben: FDM-Drucker mit implementierten Laserlichtschnittsensoren zur In-Prozessüberwachung. (Quelle: WZL/RWTH Aachen)
Quelle und weitere Infos: Pressemitteilung, QZ-online, Technische Rundschau
Comments are closed, but trackbacks and pingbacks are open.